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1. Introduction

The direct integration schemes commonly used in engineering practice include various
difference methods and linear acceleration methods [1]. These schemes are either first or second
order accurate, and therefore their accuracy is relatively low especially in the high-frequency
range. In addition, most of them have inherent algorithmic damping. Although such damping can
help to damp out the spurious high-frequency responses, it may distort the high-frequency
responses in cases where they are of relevance. Hence, it is desirable if the numerical dissipation in
the high-frequency range is controllable.
To overcome these problems, a number of higher order numerical integration algorithms have

been put forward. Based on Hamilton’s law of varying action, Riff and Baruch [2] used cubic
interpolation functions to construct a time integration scheme, which was found to be fourth
order accurate and conditionally stable. Argyris et al. [3] and Gellert [4] used Hermitian shape
functions and point collocation method to derive algorithms corresponding to the Pad!e
approximations, and the algorithms were shown to be unconditionally stable and fourth order
accurate. Also using cubic shape functions and the collocation method, Golley [5] obtained a third
order accurate and conditionally stable algorithm with the second order Gauss quadrature points
as the collocation points. Kujawski and Gallagher [6] derived a fourth order accurate
unconditionally stable algorithm from a generalized least-squares procedure for undamped
systems. Tarnow and Simo [7] demonstrated the use of sub-stepping technique to get fourth order
accurate solutions from the second order accurate algorithms by evaluating the solutions at three
fractional steps.
The search for numerical integration schemes with arbitrary order of accuracy mainly started in

the 1990s. Zhong and Williams [8] proposed a precise time step integration method (PTSIM),
which was an exact solution of the homogenous equations of motion. The accuracy of the
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algorithm is restricted only by the simulation accuracy of loading. Fung [9] put forward a
complex-time-step method to construct a family of unconditionally stable higher order accurate
algorithms with controllable numerical dissipation. However to maintain higher order accuracy,
the excitation may need some modifications. In a bid to improve the stability for linear second
order differential equations based on the weighted residual method, Fung [10] presented a strategy
for determination of the weighting parameters for unconditional stability and arbitrary order of
accuracy.
A higher order mixed method (MM) for time integration in dynamic structural analysis is

proposed here. It uses a combination of the weighted residual method and the collocation method.
The dynamic response within a time interval is interpolated between the dynamic responses at the
endpoints using a fifth order polynomial. The optimum selection of various working parameters is
discussed. The application of the method to single-degree-of-freedom (s.d.o.f.) systems is
discussed. The accuracy of the time integration schemes presented are studied and compared with
those of other commonly used schemes.

2. Higher order MM

The equation of motion for a system with only one degree of freedom (d.o.f.) can be written as

.xðtÞ þ 2oz ’xðtÞ þ o2xðtÞ ¼ pðtÞ; xð0Þ ¼ x0; ’xð0Þ ¼ ’x0; ð1Þ

in which z is the damping ratio, o is the undamped circular natural frequency of the system, pðtÞ is
the modal forcing excitation, and x; ’x and .x are, respectively, the displacement, velocity and
acceleration. Introducing t ¼ tk þ tDt where tk is a typical discrete time for numerical
computation and t is the non-dimensional time, Eq. (1) can be normalized as

xð2ÞðtÞ þ 2zoDtxð1ÞðtÞ þ o2Dt2xð0ÞðtÞ ¼ pðtk þ tDtÞDt2; ð2Þ

in which the time derivatives of x with respect to t are defined as

dax

dta
¼
1

Dta
dax

dta
¼
1

Dta
xðaÞðtÞ ða ¼ 1; 2Þ ð3Þ

and Dt is the time step. The dynamic response vectors at the start and end points of the time
interval ½tk; tkþ1� are, respectively, written in terms of the derivatives as

fdk;0g
T ¼ ½xð0Þ

k x
ð1Þ
k Dt x

ð2Þ
k Dt2�; ð4Þ

fdk;1g
T ¼ ½xð0Þ

kþ1 x
ð1Þ
kþ1Dt x

ð2Þ
kþ1Dt2�: ð5Þ

The interpolated function of displacement xðtÞ can be expressed as

xðtÞ ¼ fdkg
T½C0�fTg; ð6Þ

where

fdkg
T ¼ ½fdk;1g

T fdk;0g
T�; ð7Þ
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½C0� ¼

6 	15 10 0 0 0

	3 7 	4 0 0 0

0:5 	1 0:5 0 0 0

	6 15 	10 0 0 1

	3 8 	6 0 1 0

	0:5 1:5 	1:5 0:5 0 0

2
6666666664

3
7777777775
; ð8Þ

fTgT ¼ ½t5 t4 t3 t2 t 1�: ð9Þ

The time derivatives of xðtÞ are given by
dax

dta
¼ fdkg

T½Ca�fTg ða ¼ 1; 2Þ; ð10Þ

where the ½Ca� matrices are

½C1� ¼

0 30 	60 30 0 0

0 	15 28 	12 0 0

0 2:5 	4 1:5 0 0

0 	30 60 	30 0 0

0 	15 32 	18 0 1

0 	2:5 6 	4:5 1 0

2
6666666664

3
7777777775
; ð11Þ

½C2� ¼

0 0 120 	180 60 0

0 0 	60 84 	24 0

0 0 10 	12 3 0

0 0 	120 180 	60 0

0 0 	60 96 	36 0

0 0 	10 18 	9 1

2
6666666664

3
7777777775
: ð12Þ

Substituting Eq. (10) into Eq. (2), the residual RðtÞ is given by

RðtÞ ¼ fdkg
Tð½C2� þ 2zoDt½C1� þ o2Dt2½C0�ÞfTg 	 pðtk þ tDtÞDt2: ð13Þ

The present MM is a higher order method built upon the weighted residual method and the
collocation method. Prescribing that Eq. (2) is satisfied at t ¼ 1 (i.e., tkþ1 ¼ tk þ DtÞ and t ¼ y
(i.e., tkþy ¼ tk þ yDtÞ; we have, respectively,

xð2Þð1Þ þ 2zoDtxð1Þð1Þ þ o2Dt2xð0Þð1Þ ¼ pðtk þ DtÞDt2; ð14Þ

xð2ÞðyÞ þ 2zoDtxð1ÞðyÞ þ o2Dt2xð0ÞðyÞ ¼ pðtk þ yDtÞDt2; ð15Þ

where y is a parameter that controls the stability of the algorithm. In particular, to establish the
relationship between the dynamic response vectors fdk;0g and fdk;1g; the residual RðtÞ defined in
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Eq. (13) is minimized using the weighting function cðtÞ byZ 1

0

cðtÞRðtÞ dt ¼ 0: ð16Þ

Let the weighting function cðtÞ be chosen as

cðtÞ ¼ tb ð17Þ

in terms of a parameter b that controls the accuracy of the algorithms. Substituting Eqs. (6), (10)
and (17) into Eqs. (14)–(16), the recurrence formula is obtained as

½A�fdk;1g ¼ ½B�fdk;0g þ fPkg; ð18Þ

where ½A� and ½B� are 3
 3 coefficient matrices, and fPkg is the load vector given by

fPkg ¼ pðti þ DtÞDt2 Dt2
Z 1

0

pðti þ tDtÞtb dt pðti þ yDtÞDt2
� 	T

: ð19Þ

The integrals in Eqs. (16) and (19) are worked out by Gauss quadrature using three Gauss points.
The coefficient matrices ½A� and ½B� are given explicitly as

½A� ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75; ½B� ¼

b11 b12 b13

b21 b22 b23

b31 b32 b33

2
64

3
75; ð20Þ

where

a11 ¼$2; a12 ¼ 2z$; a13 ¼ 1;

a21 ¼$2ð6b6 	 15b5 þ 10b4Þ þ 2z$ð30b5 	 60b4 þ 30b3Þ þ 120b4 	 180b3 þ 60b2;

a22 ¼$2ð	3b6 þ 7b5 	 4b4Þ þ 2z$ð	15b5 þ 28b4 	 12b3Þ 	 60b4 þ 84b3 	 24b2;

a23 ¼$2ð0:5b6 	 b5 þ 0:5b4Þ þ 2z$ð2:5b5 	 4b4 þ 1:5b3Þ þ 10b4 	 12b3 þ 3b2;

a31 ¼$2ð6y5 	 15y4 þ 10y3Þ þ 2z$ð30y4 	 60y3 þ 30y2Þ þ 120y3 	 180y2 þ 60y;

a32 ¼$2ð	3y5 þ 7y4 	 4y3Þ þ 2z$ð	15y4 þ 28y3 	 12y2Þ 	 60y3 þ 84y2 	 24y;

a33 ¼$2ð0:5y5 	 y4 þ 0:5y3Þ þ 2z$ð2:5y4 	 4y3 þ 1:5y2Þ þ 10y3 	 12y2 þ 3y;

b11 ¼ 0:0; b12 ¼ 0:0; b13 ¼ 0:0;

b21 ¼$2ð6b6 	 15b5 þ 10b4 	 b1Þ þ 2z$ð30b5 	 60b4 þ 30b3Þ þ 120b4 	 180b3 þ 60b2;

b22 ¼$2ð3b6 	 8b5 þ 6b4 	 b2Þ þ 2z$ð15b5 	 32b4 þ 18b3 	 b1Þ þ 60b4 	 96b3 þ 36b2;

b23 ¼$2ð0:5b6 	 1:5b5 þ 1:5b4 	 0:5b3Þ þ 2z$ð2:5b5 	 6b4 þ 4:5b3 	 b2Þ

þ 10b4 	 18b3 þ 9b2 	 b1;

b31 ¼$2ð6y5 	 15y4 þ 10y3 	 1Þ þ 2z$ð30y4 	 60y3 þ 30y2Þ þ 120y3 	 180y2 þ 60y;

b32 ¼$2ð3y5 	 8y4 þ 6y3 	 yÞ þ 2z$ð15y4 	 32y3 þ 18y2 	 1Þ þ 60y3 	 96y2 þ 36y;
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b33 ¼$2ð0:5y5 	 1:5y4 þ 1:5y3 	 0:5y2Þ þ 2z$ð2:5y4 	 6y3 þ 4:5y2 	 yÞ

þ 10y3 	 18y2 þ 9y	 1;

b1 ¼ 1=ðbþ 1Þ; b2 ¼ 1=ðbþ 2Þ; b3 ¼ 1=ðbþ 3Þ;

b4 ¼ 1=ðbþ 4Þ; b5 ¼ 1=ðbþ 5Þ; b6 ¼ 1=ðbþ 6Þ:

The amplification matrix ½Te� for the MM can be derived from Eq. (18) as

½Te� ¼ ½A�	1½B�: ð21Þ

The amplification matrix ½Te� and therefore its spectral radius r both depend on the parameters y
and b; the damping ratio z and the ratio Dt=T where T is the undamped natural period. As Dt=T
tends to infinity, the spectral radius rðDt=T ; z; y; bÞ is independent of the damping ratio z and can
be rewritten as a function of y and b only, i.e., rðN; z; y;bÞ ¼ Krðy; bÞ: The variation of the spectral
radius Krðy; bÞ against the parameters y and b is shown in Fig. 1. The choices of parameters y and b
for unconditional stability of this algorithm are

1:01pyp1:26 for b ¼ 0;

0:98pyp1:35 for b ¼ 1;

0:96pyp1:43 for b ¼ 2;

0:93pyp1:50 for b ¼ 3: ð22Þ

Fig. 2 shows the variation of the spectral radius rðDt=T ; z; y;bÞ against the ratio Dt=T for the
damping ratio z ¼ 0:01 and several combinations of parameters y and b for unconditional
stability according to Eq. (22). According to Wood [11], the spectral radius of amplitude against
Dt=T should stay close to unit level as long as possible and decrease to about 0.5 or 0.8 as Dt=T
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Fig. 1. Mixed method: spectral radius of ½Te� when Dt=T approaches infinity.
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Fig. 2. Mixed method: spectral radius of ½Te� against time step to period ratio Dt=T :

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.0 0.1 0.2 0.3 0.4

Time step to period ratio �t/T  

R
el

at
iv

e 
pe

ri
od

 e
rr

or

θ=1.01, β=0

θ=1.04, β=0

θ=1.18, β=0

θ=1.23, β=0

θ=1.01, β=1

θ=1.03, β=1

θ=1.21, β=1

θ=1.29, β=1

θ=1.01, β=2

θ=1.02, β=2

θ=1.24, β=2
θ=1.34, β=2

θ=1.26, β=3
θ=1.40, β=3 

Fig. 3. Mixed method: relative period error versus time step to period ratio ðz ¼ 0:0Þ:
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tends to infinity. The following parameters are therefore suggested:

1:01pyp1:04; 1:18pyp1:23 for b ¼ 0;

1:01pyp1:03; 1:21pyp1:29 for b ¼ 1;

1:01pyp1:02; 1:24pyp1:34 for b ¼ 2;

1:26pyp1:40 for b ¼ 3: ð23Þ

The proposed algorithm can be shown to be fifth order accurate. The accuracy of the algorithm
can be measured by the relative period error and the amplitude decay. Fig. 3 shows how the
relative period error varies with the ratio Dt=T for different combinations of parameters y and b:
It is observed that the smaller the parameters y and b; the smaller the relative period error.
Similarly the amplitude decay is plotted against the ratio Dt=T in Fig. 4, which shows that the
smaller the parameters y and b; the smaller the amplitude decay. Compared with the conventional
numerical integration schemes such as Houbolt method, Wilson y method (WM) and Newmark b
method (NM) [1], the proposed algorithm gives smaller relative period error and amplitude decay.
This shows that the proposed method is an improvement over the conventional methods. Bearing
in mind the desirability of stability and accuracy, and that the proposed method places a lot of
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weight on the latter part of the time step with values of y close to unity, it is suggested that the
parameters y and b are chosen as follows:

1:18pyp1:23 for b ¼ 0;

1:21pyp1:29 for b ¼ 1;

1:24pyp1:34 for b ¼ 2;

1:26pyp1:40 for b ¼ 3: ð24Þ

Extension of the proposed MM is fairly straightforward, and it requires the derivation of the
corresponding coefficient matrices.

3. Numerical example

An s.d.o.f. system with damping ratio z ¼ 0:05 and undamped circular natural frequency
o ¼ 1:0 can be described by the following equation:

.xðtÞ þ 2oz ’xðtÞ þ o2xðtÞ ¼ f ðtÞ; xð0Þ ¼ 0:0; ’xð0Þ ¼ 0:0: ð25Þ

Note that the units are omitted for convenience. The applied loading f ðtÞ is

f ðtÞ ¼
sinðptÞ; 0ptp1:0;
0; tX1:0:

(
ð26Þ
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Table 1

Displacement responses of the s.d.o.f. system due to a half-sinusoidal loading

Scheme Dt Time t Max. error ð%Þ

0.2 0.4 0.6 0.8 1.0

Exact 0.00407805 0.0303926 0.0913166 0.183735 0.289484 —

MM 0.01 0.00407805 0.0303926 0.0913166 0.183735 0.289484 0.000

0.2 0.00407863 0.0303943 0.0913190 0.183739 0.289488 0.014

PTSIM 0.001 0.00407805 0.0303926 0.0913166 0.183735 0.289484 0.000

0.01 0.00407772 0.0303901 0.0913091 0.183720 0.289461 0.008

0.05 0.00406947 0.0303298 0.0911285 0.183357 0.288889 0.210

0.20 0.00389127 0.0293407 0.0882162 0.177613 0.279920 4.580

NM 0.001 0.00407810 0.0303926 0.0913166 0.183735 0.289484 0.001

0.01 0.00408242 0.0303969 0.0913142 0.183720 0.289453 0.107

0.05 0.00418686 0.0305004 0.0912551 0.183349 0.288701 2.668

0.20 0.00576260 0.0320355 0.0902718 0.177561 0.277025 41.31

WM 0.001 0.00407805 0.0303926 0.0913166 0.183735 0.289485 0.000

0.01 0.00407763 0.0303896 0.0913079 0.183718 0.289457 0.010

0.05 0.00406736 0.0303192 0.0911024 0.183311 0.288826 0.262

0.20 0.00385433 0.0291349 0.0878084 0.176909 0.278951 5.485
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The displacement responses for 0:2ptp1:0 computed by five different methods are listed in
Table 1. The methods used include the MM, the PTSIM [8], the NM [1] and the WM [1]. The
numerical results are then compared with the available exact solution. Different values of time
step Dt have been used to investigate the capabilities of various methods. For the MM, the
parameters b ¼ 0 and y ¼ 1:18 are used. The parameters a ¼ 0:5 and d ¼ 0:25 have been used in
the NM. The parameter y ¼ 1:40 has been used in the WM. It is observed that the proposed
method performs better.

4. Conclusions

The MM presented here uses a combination of the weighted residual method and the
collocation method. The dynamic response within a time interval is interpolated between
the dynamic responses at the end points using a fifth order polynomial. The optimum selection of
the working parameters is discussed, and recommendations are given for their choice to ensure
unconditional stability in computation. The algorithm is fifth order accurate and the dissipation is
controllable. The accuracy of the method presented is studied and compared with those of other
commonly used schemes.
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